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Vortices in superfluid

Introduction
Superfluidity is a property of flowing without friction. Everyday experience tells us that motion of an
ordinary fluid (say, water at room temperature) is always accompanied by viscous dissipation of energy,
so that the flow gradually becomes slower unless it is maintained by external forces. In contrast, super-
fluid exhibits no loss of kinetic energy: once excited the motion of superfluid can continue indefinitely.
Superfluidity was originally discovered experimentally in liquid helium.

We study properties of superfluid helium at zero temperature. It will be treated as an incompressible
fluid with density 𝜌. Flow continuity (the fact that the mass flowing into and the mass flowing out of a
given infinitesimal volume are equal) implies that the flux of helium velocity ⃗𝑣 through a closed surface
is always zero. Superfluid velocity in this aspect is analogous to the magnetic field intensity. By analogy
with the magnetic field lines, “streamlines” are tangential to the fluid velocity at each point and their
density is proportional to its magnitude.

True superflow has an important property of being irrotational: circulation of superfluid velocity ⃗𝑣 along
any closed path within helium is zero

∫
𝐿

⃗𝑣 ⋅ 𝑑 ⃗𝑙 = 0 (1)

This statement must be amended if superfluidity is absent along a thin “vortex filament”. The thickness
of the filament itself is of approximately atomic dimensions 𝑎, but the vortex induces long range velocity
field in surrounding superfluid: velocity circulation around such filament is the circulation quantum1

∣∫
𝐿

⃗𝑣 ⋅ 𝑑 ⃗𝑙 ∣ = 2𝜋𝜅, (2)

and zero if the path can be contracted to a single point without crossing the vortex, see Fig. 1. This
supports the analogy between superflow and the magnetic field created by wires carrying current: su-
perposition of two valid velocity distributions is a valid velocity distribution and the velocity at any point
is equal (up to a dimensional factor) to themagnetic field produced by the unit currents running through
a system of wires representing vortex filaments.

1Circulation quantization is a macroscopic quantum effect and corresponds to the angular momentum quantization in Bohr
model. The circulation quantum can be expressed as 𝜅 = ℏ/𝑚He, where 𝑚He is the mass of helium atom.
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Fig. 1: Vortex filament (red) in superfluid (light blue). Velocity circulations along paths 𝐿1, 𝐿2,
𝐿5, and 𝐿6 are all zero, but those for 𝐿3 and 𝐿4 are equal to ±2𝜋𝜅. Note that circulations along
𝐿3 and 𝐿4 have opposite signs.

Part A. Steady filament (0.75 points)
Consider a cylindrical beaker (radius 𝑅0 ≫ 𝑎) of superfluid helium and a straight vertical vortex filament
in its center Fig. 2.

A.1 Plot the streamlines. Find out the velocity 𝑣 at a point ⃗𝑟. 0.25pt

A.2 Work out the free surface shape (height as a function of coordinate 𝑧( ⃗𝑟)) around
the vortex. Free fall acceleration is 𝑔. Surface tension can be neglected.

0.5pt

Fig. 2: Straight vortex along the axis of a beaker.

Part B. Vortex motion (1.4 points)
Free vortices move about in space with the flow2. In other words each element of the filament moves
with the velocity ⃗𝑣 of the fluid at the position of that element.

2This is a consequence of momentum conservation, see next section.
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As an example, consider a pair of counter-rotating straight vortices placed initially at distance 𝑟0 from
each other, see Fig. 3. Each vortex produces velocity 𝑣0 = 𝜅/𝑟0 at the axis of another. As a result, the
vortex pair moves rectilinearly with constant speed 𝑣0 = 𝜅/𝑟0 so that the distance between them remains
unchanged.

Fig. 3: Parallel vortex filaments with opposite circulations.

B.1 Consider two identical straight vortices initially placed at distance 𝑟0 from each
other as shown in Fig. 4. Find initial velocities of the vortices and draw their
trajectories.

0.25pt

Fig. 4: Parallel vortex filaments with equal circulations.

A beaker of helium (see Part A) is filled with triangular lattice (𝑢 ≪ 𝑅0) of identical vertical vortices, see
Fig. 5.

Fig. 5: Triangular lattice of vortices in a beaker. The view from above.



Theory Q1-4
English (Official)

B.2 Draw the trajectories of vortices A, B, and C (located in the center). 0.15pt

B.3 Find velocity 𝑣( ⃗𝑟) of a vortex positioned at ⃗𝑟. 0.4pt

B.4 Find the distance AB(𝑡) between the vortices A and B at time 𝑡. Treat AB(0) as
given.

0.35pt

B.5 Work out the "smoothed out" (omitting the lattice structure) free helium surface
shape 𝑧( ⃗𝑟).

0.25pt

Part C. Momentum and energy (1.75 points)
The long range velocity field is themajor contribution to the energy of a systemof vortices, it is insensitive
to exact structure of the filament. The filament itself can not be properly described by the macroscopic
theory and apparent singularities (infinities) are insignificant. Real physical quantities, such as the en-
ergy, of the region inside a thin tube of radius 𝑎 around the filament should be neglected. Outside of this
tube the density of superflow kinetic energy 𝜌𝑣2/2 (where 𝜌 = const) is analogous to the energy density
of the magnetic field 𝐵2/(2𝜇0) — they are both quadratic in respective variables. This analogy together
with the correspondence betweenmagnetic field and superfluid velocity generated by vortices (currents)
facilitates calculation of the flow energy for a given system. For instance, given the inductance of a cir-
cular wire loop 𝐿 ≈ 𝜇0𝑅 log(𝑅/𝑎), where 𝑅 is the loop radius and 𝑎 is wire radius, we get the superfluid
vortex loop energy3

𝑈 ≈ 2𝑅𝜌𝜋2𝜅2 log(𝑅/𝑎) (3)

Total fluid momentum is also determined by the long range velocity distribution. It is obtained by inte-
gration of themomentum density 𝜌 ⃗𝑣. Again, consider a flow generated by a circular vortex loop placed in
𝑥𝑦 plane. It is obvious from the symmetry considerations, that total momentum has only 𝑧 component:

𝑃 = ∫ 𝜌𝑣𝑧𝑑𝑉 = 𝜌 ∫ ∫ (∫ 𝑣𝑧𝑑𝑧)
⏟⏟⏟⏟⏟

𝑞(𝑥,𝑦)

𝑑𝑥𝑑𝑦 (4)

The innermost integration is in fact an integration along appropriate paths parallel to 𝑧-axis, see Fig. 6.
From the circulation identity (2) it follows that

𝑞(𝑥, 𝑦) = ∫
𝐿(𝑥,𝑦)

⃗𝑣 ⋅ 𝑑 ⃗𝑙 (5)

is piecewise constant. Particularly, it is zero for paths passing outside the ring and 2𝜋𝜅 for paths inside
it. Total momentum is therefore

𝑃 = 𝜌 ⋅ 𝜋𝑅2 ⋅ 2𝜋𝜅 = 2𝜋2𝜌𝑅2𝜅 (6)
3This expression is also valid only if log𝑅/𝑎 ≫ 1.
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Fig. 6: Velocity field of a circular vortex loop and integration paths (green) for 𝑞(𝑥, 𝑦) calcula-
tion.

Fig. 7: A nearly rectangular vortex loop, 𝑏 ≪ 𝑑.

C.1 Consider a nearly rectangular vortex loop 𝑏 × 𝑑, 𝑏 ≪ 𝑑, Fig. 7. Indicate the
direction of its momentum ⃗𝑃 . Find out the momentum magnitude.

0.3pt

C.2 Calculate its energy 𝑈 . 0.7pt

C.3 Suppose we shift a long straight vortex filament by a distance 𝑏 in 𝑥 direction,
see Fig. 8. Howmuch does the fluid momentum change? Indicate the momen-
tum change direction. The filament length (constrained by the vessel walls) is
𝑑.

0.75pt
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Fig. 8: Momentum changes whenever the vortex shifts with respect to the fluid.

Part D. Trapped charges (2.85 points)
Electrons, if injected in helium, get trapped in the vortex filaments. Here and below polarizability of
helium can be neglected (𝜖 = 1).

Fig. 9: Straight vortex in a uniform electric field.

D.1 Consider a straight vortex charged with uniform linear density 𝜆 < 0 in a uni-
form electric field ⃗𝐸. Draw the vortex trajectory. Find its velocity as a function
of time.

0.5pt

A circular vortex loop of radius𝑅0 initially chargedwith uniform linear density 𝜆 < 0 is placed in a uniform
electric field ⃗𝐸 perpendicular to its plane, opposite to its momentum ⃗𝑃0.

Figure 10: (left) Vortex ring in a uniform electric field. (right) Cross section of the ring.
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D.2 Draw the trajectory of the loop center𝐶. Find the radius of the loop as a function
of time.

0.6pt

D.3 Find its velocity 𝑣(𝑡) as a function of time. 1.5pt

D.4 The field is switched off at a time 𝑡∗ when the velocity reaches the value 𝑣∗ =
𝑣(𝑡∗). Find the loop velocity 𝑣(𝑡) at a later time 𝑡 > 𝑡∗.

0.25pt

Part E. Influence of the boundaries (3.25 points)
Solid walls alter the velocity field created by a vortex filament, because the fluid cannot flow through
them. Mathematically this means that the wall-normal velocity component vanishes at the wall surface.

Fig. 11: Straight vortex filament near a flat wall.

E.1 Draw the trajectory of a straight vortex, initially placed at a distance ℎ0 from a
flat wall. Find its velocity as a function of time.

0.5pt

Consider a straight vortex placed in a corner at a distance ℎ0 from both walls.

Fig. 12: Straight vortex filament in a corner.

E.2 What is the initial velocity 𝑣0 of the vortex? 0.75pt
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E.3 Draw the trajectory of the vortex. 0.5pt

E.4 What is the velocity of the vortex 𝑣∞ after very long time? 1.5pt


